Abstract
Weyl semimetals (WSMs) are gapless topological states of matter with broken inversion and/or time reversal symmetry. WSMs can support a circulating photocurrent when illuminated by circularly polarized light at normal incidence. Here, we report a spatially dispersive circular photogalvanic effect (s-CPGE) in a WSM that occurs with a spatially varying beam profile. Our analysis shows that the s-CPGE is controlled by a symmetry selection rule combined with asymmetric carrier excitation and relaxation dynamics. By evaluating the s-CPGE for a minimal model of a WSM, a frequency-dependent scaling behaviour of the photocurrent is obtained. Wavelength-dependent measurements from the visible to mid-infrared range show evidence of Berry curvature singularities and band inversion in the s-CPGE response. We present the s-CPGE as a promising spectroscopic probe for topological band properties, with the potential for controlling photoresponse by patterning optical fields on topological materials to store, manipulate and transmit information.
Original language | English |
---|---|
Pages (from-to) | 955-962 |
Number of pages | 8 |
Journal | Nature Materials |
Volume | 18 |
Issue number | 9 |
DOIs | |
Publication status | Published - Sept 1 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
ASJC Scopus Subject Areas
- General Chemistry
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Mechanical Engineering