Abstract
The combination of spectral information and spatial context is known to be a suitable way in improving classification accuracy for hyperspectral image. In this paper, a novel method using PCA and spatial filtering for the classification of hyperspectral image is proposed. Firstly, PCA is used to extract spectral information from the hyperspectral image. Secondly, spatial filters containing a set of 2-D Gabor filters and rolling guidance filters (RGF) are convolved with the principal components to extract the subtle spatial texture and edge features respectively. Thirdly, the obtained features are concatenated together as a feature cube to be classified by SVM. The proposed method is thus named as PCA-GR. Experimental results on two real hyperspectral image data sets demonstrate the significant advantages of the proposed method over the compared ones.
Original language | English |
---|---|
Title of host publication | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 513-516 |
Number of pages | 4 |
ISBN (Electronic) | 9781728163741 |
DOIs | |
Publication status | Published - Sept 26 2020 |
Externally published | Yes |
Event | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 - Virtual, Waikoloa, United States Duration: Sept 26 2020 → Oct 2 2020 |
Publication series
Name | International Geoscience and Remote Sensing Symposium (IGARSS) |
---|
Conference
Conference | 2020 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2020 |
---|---|
Country/Territory | United States |
City | Virtual, Waikoloa |
Period | 9/26/20 → 10/2/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
ASJC Scopus Subject Areas
- Computer Science Applications
- General Earth and Planetary Sciences
Keywords
- Hyperspectral image classification
- rolling guidance filter
- spatial texture information