Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides

Shengnan Sun, Chencheng Dai, Peng Zhao, Shibo Xi, Yi Ren, Hui Ru Tan, Poh Chong Lim, Ming Lin, Caozheng Diao, Danwei Zhang, Chao Wu, Anke Yu, Jie Cheng Jackson Koh, Wei Ying Lieu, Debbie Hwee Leng Seng, Libo Sun, Yuke Li, Teck Leong Tan, Jia Zhang*, Zhichuan J. Xu*Zhi Wei Seh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

55 Citations (Scopus)

Abstract

The electrochemical conversion of nitrate to ammonia is a way to eliminate nitrate pollutant in water. Cu-Co synergistic effect was found to produce excellent performance in ammonia generation. However, few studies have focused on this effect in high-entropy oxides. Here, we report the spin-related Cu-Co synergistic effect on electrochemical nitrate-to-ammonia conversion using high-entropy oxide Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O. In contrast, the Li-incorporated MgCoNiCuZnO exhibits inferior performance. By correlating the electronic structure, we found that the Co spin states are crucial for the Cu-Co synergistic effect for ammonia generation. The Cu-Co pair with a high spin Co in Mg0.2Co0.2Ni0.2Cu0.2Zn0.2O can facilitate ammonia generation, while a low spin Co in Li-incorporated MgCoNiCuZnO decreases the Cu-Co synergistic effect on ammonia generation. These findings offer important insights in employing the synergistic effect and spin states inside for selective catalysis. It also indicates the generality of the magnetic effect in ammonia synthesis between electrocatalysis and thermal catalysis.

Original languageEnglish
Article number260
JournalNature Communications
Volume15
Issue number1
DOIs
Publication statusPublished - Dec 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2024, The Author(s).

ASJC Scopus Subject Areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Spin-related Cu-Co pair to increase electrochemical ammonia generation on high-entropy oxides'. Together they form a unique fingerprint.

Cite this