Stabilizing Copper by a Reconstruction-Resistant Atomic Cu-O-Si Interface for Electrochemical CO2 Reduction

Xin Tan, Kaian Sun, Zewen Zhuang, Botao Hu, Yu Zhang, Qinggang Liu, Chang He, Zhiyuan Xu, Chang Chen, Hai Xiao, Chen Chen*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

133 Citations (Scopus)

Abstract

Copper (Cu), a promising catalyst for electrochemical CO2 reduction (CO2R) to multi-electron reduction products, suffers from an unavoidable and uncontrollable reconstruction process during the reaction, which not only may lead to catalyst deactivation but also brings great challenges to the exploration of the structure-performance relationship. Herein, we present an efficient strategy for stabilizing Cu with silica and synthesize reconstruction-resistant CuSiOx amorphous nanotube catalysts with abundant atomic Cu-O-Si interfacial sites. The strong interfacial interaction between Cu and silica makes the Cu-O-Si interfacial sites ultrastable in the CO2R reaction without any apparent reconstruction, thus exhibiting high CO2-to-CH4 selectivity (72.5%) and stability (FECH4 remains above 60% after 12 h of test). A remarkable CO2-to-CH4 conversion rate of 0.22 μmol cm-2 s-1 was also achieved in a flow cell device. This work provides a very promising route for the design of highly active and stable Cu-based CO2R catalysts.

Original languageEnglish
JournalJournal of the American Chemical Society
DOIs
Publication statusAccepted/In press - 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 American Chemical Society.

ASJC Scopus Subject Areas

  • Catalysis
  • General Chemistry
  • Biochemistry
  • Colloid and Surface Chemistry

Fingerprint

Dive into the research topics of 'Stabilizing Copper by a Reconstruction-Resistant Atomic Cu-O-Si Interface for Electrochemical CO2 Reduction'. Together they form a unique fingerprint.

Cite this