Abstract
The practical application of the Zn-metal anode for aqueous batteries is greatly restricted by catastrophic dendrite growth, intricate hydrogen evolution, and parasitic surface passivation. Herein, a polyanionic hydrogel film is introduced as a protective layer on the Zn anode with the assistance of a silane coupling agent (denoted as Zn–SHn). The hydrogel framework with zincophilic –SO3− functional groups uniformizes the zinc ions flux and transport. Furthermore, such a hydrogel layer chemically bonded on the Zn surface possesses an anti-catalysis effect, which effectively suppresses both the hydrogen evolution reaction and formation of Zn dendrites. As a result, stable and reversible Zn stripping/plating at various currents and capacities is achieved. A full cell by pairing the Zn–SHn anode with a NaV3O8·1.5 H2O cathode shows a capacity of around 176 mAh g−1 with a retention around 67% over 4000 cycles at 10 A g−1. This polyanionic hydrogel film protection strategy paves a new way for future Zn-anode design and safe aqueous batteries construction.
Original language | English |
---|---|
Article number | 2202382 |
Journal | Advanced Materials |
Volume | 34 |
Issue number | 27 |
DOIs | |
Publication status | Published - Jul 7 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 Wiley-VCH GmbH.
ASJC Scopus Subject Areas
- General Materials Science
- Mechanics of Materials
- Mechanical Engineering
Keywords
- aqueous Zn-ion batteries
- polyanionic hydrogels
- suppression of dendrites
- Zn electrodeposition
- Zn-metal anodes