Structural and conformable designs for aqueous multifunctional batteries

Gwendolyn J.H. Lim, Rodney Chua, J. Justin Koh, Kwok Kiong Chan, Ernest Jun Jie Tang, Vanessa Teh, Madhavi Srinivasan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

A combination of structural and conformable batteries offers a pathway towards an increased payload capacity and alleviation of ‘range anxiety’ for electric vehicles through effective integration of mechanical stability and energy storage materials. This work focus on a holistic combination of aqueous structural and conformable batteries in vehicles through a multifunctional direct (structural) approach (MFDA) and multifunctional conformable approach (MFCA), applied to the exterior and interior structure of a car, respectively. A highly safe and well-designed aqueous electrolyte composed of Li–Zn hybrid ions was adopted and was well compatible with both the MFDA and MFCA LiMn2O4 cathode system fabricated. A Young's Modulus of 13.57 ± 0.9 GPa for the MFDA cathode was achieved, an order of magnitude higher than conventional slurry coated cathode materials. Additionally, a high rate (5 A/g) capability and superior cycle stability (∼80.3 mAh/g after 1000 cycles @ 2 A/g) of the MFCA batteries with great deformation resilience are also demonstrated. This concept combination was successfully applied in a prototype toy car, and can guide the design of a new generation of structural batteries towards well-distributed energy storage throughout the vehicle.

Original languageEnglish
Article number101255
JournalMaterials Today Energy
Volume33
DOIs
Publication statusPublished - Apr 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 Elsevier Ltd

ASJC Scopus Subject Areas

  • Renewable Energy, Sustainability and the Environment
  • Materials Science (miscellaneous)
  • Nuclear Energy and Engineering
  • Fuel Technology
  • Energy Engineering and Power Technology

Keywords

  • Aqueous batteries
  • Conformable and flexible batteries
  • Energy storage
  • Form factor
  • Structural batteries

Fingerprint

Dive into the research topics of 'Structural and conformable designs for aqueous multifunctional batteries'. Together they form a unique fingerprint.

Cite this