Abstract
Stimuli-sensitive biomaterials that are activated by light are in need of formulations that are stable under indoor lighting yet can be activated under direct sunlight. Carbene-based bioadhesives are a new generation of film-forming polymers that are stable under indoor lighting yet are rapidly activated with low-energy UVA light, but have never been evaluated under sunlight exposure. Previous investigations have evolved two flexible carbene-based platforms, where aryl-diazirine is grafted on to polyamidoamine dendrimers (PAMAM-NH2; generation-5) or hydrophobic liquid polycaprolactone tetrol to yield G5-Dzx and CaproGlu, respectively. For the first time the activation of G5-Dzx and CaproGlu is investigated by natural sunlight with intensities up to 10 mW·cm−2. Structure-property relationships of bioadhesion are investigated by: (1) joules dose of sunlight; (2) bioadhesive polymer structure; and (3) optical concentrators of magnifying glass and Fresnel lens. Using only natural sunlight, adhesion strength could be tuned from 20 to 150 kPa with crosslinking achieved in under 1 min. The results show that carbene-based polymers are a class of stimuli-sensitive biomaterials that are stable to indoor lighting, yet can be rapidly activated under direct sunlight, which may be useful for topical film forming polymers or as active ingredients in sunscreen formulations.
Original language | English |
---|---|
Article number | 112240 |
Journal | Materials Science and Engineering C |
Volume | 127 |
DOIs | |
Publication status | Published - Aug 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021 Elsevier B.V.
ASJC Scopus Subject Areas
- General Medicine
Keywords
- Bioadhesive
- Carbene
- Diazirine
- Film-forming polymer
- Sunscreen