Superior lithium storage properties of β-FeOOH

Linghui Yu, Shibo Xi, Chao Wei, Wenyu Zhang, Yonghua Du, Qingyu Yan, Zhichuan Xu

Research output: Contribution to journalArticlepeer-review

62 Citations (Scopus)

Abstract

Several crystal forms of FeOOH are recently reported to be highly promising for lithium storage due to their high capacity, low cost, and environmental friendliness. In particular, β-FeOOH has shown a capacity of ≈1000 mAh g-1, which is comparable to other promising iron-based anodes, such as Fe2O3 and Fe3O4. However, its storage mechanisms are unclear and the potential for further improvement remains unexplored. Here, it is shown that this material can have a very high reversible capacity of ≈1400 mAh g-1, which is 20%-40% higher than Fe2O3 and Fe3O4. Such a high capacity is delivered from a series of reactions including intercalation and conversion reactions, formation/deformation of solid-state electrolyte interface layers and interfacial storage. The mechanisms are studied by a combination of electrochemical and X-ray absorption near edge spectroscopic approaches. Moreover, very long cycling performance, that is, after even more than 3000 cycles the material still has a significant capacity of more than 800 mAh g-1, is obtained by a simple electrode design involving introducing a rigid support into porous electrodes. Such long cycling performance is for the first time achieved for high-capacity materials based on conversion reactions.

Original languageEnglish
Article number1401517
JournalAdvanced Energy Materials
Volume5
Issue number6
DOIs
Publication statusPublished - Mar 1 2015
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

ASJC Scopus Subject Areas

  • Renewable Energy, Sustainability and the Environment
  • General Materials Science

Keywords

  • anodes
  • lithium-ion batteries
  • porous electrodes
  • XANES
  • β-FeOOH

Fingerprint

Dive into the research topics of 'Superior lithium storage properties of β-FeOOH'. Together they form a unique fingerprint.

Cite this