Support-free iridium hydroxide for high-efficiency proton-exchange membrane water electrolysis

Yubo Chen*, Chencheng Dai, Qian Wu, Haiyan Li, Shibo Xi, Justin Zhu Yeow Seow, Songzhu Luo, Fanxu Meng, Yaolong Bo, Yanghong Xia, Yansong Jia, Adrian C. Fisher, Zhichuan J. Xu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Citations (Scopus)

Abstract

The large-scale implementation of proton-exchange membrane water electrolyzers relies on high-performance membrane-electrode assemblies that use minimal iridium (Ir). In this study, we present a support-free Ir catalyst developed through a metal-oxide-based molecular self-assembly strategy. The unique self-assembly of densely isolated single IrO6H8 octahedra leads to the formation of μm-sized hierarchically porous Ir hydroxide particles. The support-free Ir catalyst exhibits a high turnover frequency of 5.31 s⁻¹ at 1.52 V in the membrane-electrode assembly. In the corresponding proton-exchange membrane water electrolyzer, notable performance with a cell voltage of less than 1.75 V at 4.0 A cm⁻² (Ir loading of 0.375 mg cm⁻²) is achieved. This metal-oxide-based molecular self-assembly strategy may provide a general approach for the development of advanced support-free catalysts for high-performance membrane-electrode assemblies.

Original languageEnglish
Article number2730
JournalNature Communications
Volume16
Issue number1
DOIs
Publication statusPublished - Dec 2025
Externally publishedYes

Bibliographical note

Publisher Copyright:
© The Author(s) 2025.

ASJC Scopus Subject Areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General
  • General Physics and Astronomy

Cite this