Abstract
The large-scale implementation of proton-exchange membrane water electrolyzers relies on high-performance membrane-electrode assemblies that use minimal iridium (Ir). In this study, we present a support-free Ir catalyst developed through a metal-oxide-based molecular self-assembly strategy. The unique self-assembly of densely isolated single IrO6H8 octahedra leads to the formation of μm-sized hierarchically porous Ir hydroxide particles. The support-free Ir catalyst exhibits a high turnover frequency of 5.31 s⁻¹ at 1.52 V in the membrane-electrode assembly. In the corresponding proton-exchange membrane water electrolyzer, notable performance with a cell voltage of less than 1.75 V at 4.0 A cm⁻² (Ir loading of 0.375 mg cm⁻²) is achieved. This metal-oxide-based molecular self-assembly strategy may provide a general approach for the development of advanced support-free catalysts for high-performance membrane-electrode assemblies.
Original language | English |
---|---|
Article number | 2730 |
Journal | Nature Communications |
Volume | 16 |
Issue number | 1 |
DOIs | |
Publication status | Published - Dec 2025 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© The Author(s) 2025.
ASJC Scopus Subject Areas
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General
- General Physics and Astronomy