Abstract
Suckerin proteins, recently discovered in the sucker ring teeth of squids, represent a family of promising structural biomacromolecules that can form supramolecular networks stabilized by nanoconfined β-sheets. Exploiting this feature as well as their specific amino acid composition, we demonstrate that artificial suckerin-19 (S-19) can be engineered into nanocarriers for efficient drug delivery and gene transfection in vitro and in vivo. First, we demonstrate that S-19 self-assembles into β-sheet stabilized nanoparticles with controlled particle sizes of 100-200 nm that are able to encapsulate hydrophobic drugs for pH-dependent release in vitro, and that can effectively inhibit tumor growth in vivo. We also show that S-19 can complex and stabilize plasmid DNA, with the complexes stabilized by hydrophobic interactions of the β-sheet domains as opposed to electrostatic interactions commonly achieved with cationic polymers, thus lowering cytotoxicity. The elevated Histidine content of S-19 appears critical to trigger endosomal escape by the proton sponge effect, thereby ensuring efficient gene transfection both in vitro and in vivo. Our study demonstrates that S-19 represents a promising functional protein nanocarrier that could be used for various drug and gene delivery applications.
Original language | English |
---|---|
Pages (from-to) | 4528-4541 |
Number of pages | 14 |
Journal | ACS Nano |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 23 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
- General Engineering
- General Physics and Astronomy
Keywords
- chemotherapy
- gene therapy
- histidine-rich protein
- nanomedicine
- protein nanoparticle