Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing

Zhihui Zeng*, Na Wu, Weidong Yang, Hao Xu, Yaozhong Liao, Chenwei Li, Mirko Luković, Yunfei Yang, Shanyu Zhao, Zhongqing Su, Xuehong Lu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Citations (Scopus)

Abstract

Ultralight and highly flexible aerogel sensors, composed of reduced graphene oxide cross-linked by sustainable-macromolecule-derived carbon, are prepared via facile freeze-drying and thermal annealing. The synergistic combination of cross-linked graphene nanosheets and micrometer-sized honeycomb pores gives rise to the exceptional properties of the aerogels, including superior compressibility and resilience, good mechanical strength and durability, satisfactory fire-resistance, and outstanding electromechanical sensing performances. The corresponding aerogel sensors, operated at an ultralow voltage of 0.2 V, can efficiently respond to a wide range of strains (0.1–80%) and pressures (13−2750 Pa) even at temperatures beyond 300 °C. Moreover, the ultrahigh-pressure sensitivity of 10 kPa−1 and excellent sensing stability and durability are accomplished. Strikingly, the aerogel sensors can also sense the vibration signals with ultrahigh frequencies of up to 4000 Hz for >1 000 000 cycles, significantly outperforming those of other sensors. These enable successful demonstration of the exceptional performance of the cross-linked graphene-based biomimetic aerogels for sensitive monitoring of mechanical signals, e.g., acting as wearable devices for monitoring human motions, and for nondestructive monitoring of cracks on engineering structures, showing the great potential of the aerogel sensors as next-generation electronics.

Original languageEnglish
Article number2202047
JournalSmall
Volume18
Issue number24
DOIs
Publication statusPublished - Jun 16 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 Wiley-VCH GmbH.

ASJC Scopus Subject Areas

  • Biotechnology
  • General Chemistry
  • Biomaterials
  • General Materials Science
  • Engineering (miscellaneous)

Keywords

  • composites
  • cross-link
  • graphene aerogels
  • sensors
  • sustainable

Fingerprint

Dive into the research topics of 'Sustainable-Macromolecule-Assisted Preparation of Cross-linked, Ultralight, Flexible Graphene Aerogel Sensors toward Low-Frequency Strain/Pressure to High-Frequency Vibration Sensing'. Together they form a unique fingerprint.

Cite this