Synergistic effect of pvdf-coated pcl-tcp scaffolds and pulsed electromagnetic field on osteogenesis

Yibing Dong, Luvita Suryani, Xinran Zhou, Padmalosini Muthukumaran, Moumita Rakshit, Fengrui Yang, Feng Wen, Ammar Mansoor Hassanbhai, Kaushik Parida, Daniel T. Simon, Donata Iandolo, Pooi See Lee, Kee Woei Ng*, Swee Hin Teoh*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

26 Citations (Scopus)

Abstract

Bone exhibits piezoelectric properties. Thus, electrical stimulations such as pulsed electromagnetic fields (PEMFs) and stimuli-responsive piezoelectric properties of scaffolds have been investigated separately to evaluate their efficacy in supporting osteogenesis. However, current understanding of cells responding under the combined influence of PEMF and piezoelectric properties in scaffolds is still lacking. Therefore, in this study, we fabricated piezoelectric scaffolds by functionalization of polycaprolactone-tricalcium phosphate (PCL-TCP) films with a polyvinylidene fluoride (PVDF) coating that is self-polarized by a modified breath-figure technique. The osteoin-ductive properties of these PVDF-coated PCL-TCP films on MC3T3-E1 cells were studied under the stimulation of PEMF. Piezoelectric and ferroelectric characterization demonstrated that scaffolds with piezoelectric coefficient d33 = −1.2 pC/N were obtained at a powder dissolution temperature of 100 C and coating relative humidity (RH) of 56%. DNA quantification showed that cell proliferation was significantly enhanced by PEMF as low as 0.6 mT and 50 Hz. Hydroxyapatite staining showed that cell mineralization was significantly enhanced by incorporation of PVDF coating. Gene expression study showed that the combination of PEMF and PVDF coating promoted late osteogenic gene expression marker most significantly. Collectively, our results suggest that the synergistic effects of PEMF and piezoelectric scaffolds on osteogenesis provide a promising alternative strategy for electrically augmented osteoinduction. The piezoelectric response of PVDF by PEMF, which could provide mechanical strain, is particularly interesting as it could deliver local mechanical stimulation to osteogenic cells using PEMF.

Original languageEnglish
Article number6438
JournalInternational Journal of Molecular Sciences
Volume22
Issue number12
DOIs
Publication statusPublished - Jun 2 2021
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2021 by the authors. Licensee MDPI, Basel, Switzerland.

ASJC Scopus Subject Areas

  • Catalysis
  • Molecular Biology
  • Spectroscopy
  • Computer Science Applications
  • Physical and Theoretical Chemistry
  • Organic Chemistry
  • Inorganic Chemistry

Keywords

  • Bone tissue engineering
  • Electrical stimulation
  • Electroactive biomaterial
  • Piezoelectric scaffold
  • Pulsed electromagnetic field
  • Stimuli-responsive materials

Fingerprint

Dive into the research topics of 'Synergistic effect of pvdf-coated pcl-tcp scaffolds and pulsed electromagnetic field on osteogenesis'. Together they form a unique fingerprint.

Cite this