Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO 2 for lithium-ion batteries

Hao Bin Wu, Xiong Wen Lou*, Huey Hoon Hng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

77 Citations (Scopus)

Abstract

Layered protonated titanates (LPTs), a class of interesting inorganic layered materials, have been widely studied because of their many unique properties and their use as precursors to many important TiO 2-based functional materials. In this work, we have developed a facile solvothermal method to synthesize hierarchical spheres (HSs) assembled from ultrathin LPT nanosheets. These LPT hierarchical spheres possess a porous structure with a large specific surface area and high stability. Importantly, the size and morphology of the LPT hierarchical spheres are easily tunable by varying the synthesis conditions. These LPT HSs can be easily converted to anatase TiO 2 HSs without significant structural alteration. Depending on the calcination atmosphere of air or N 2, pure anatase TiO 2 HSs or carbon-supported TiO 2 HSs, respectively, can be obtained. Remarkably, both types of TiO 2 HSs manifest excellent cyclability and rate capability when evaluated as anode materials for high-power lithium-ion batteries.

Original languageEnglish
Pages (from-to)2094-2099
Number of pages6
JournalChemistry - A European Journal
Volume18
Issue number7
DOIs
Publication statusPublished - Feb 13 2012
Externally publishedYes

ASJC Scopus Subject Areas

  • Catalysis
  • General Chemistry
  • Organic Chemistry

Keywords

  • layered compounds
  • lithium storage
  • nanosheets
  • nanostructures
  • titanates

Fingerprint

Dive into the research topics of 'Synthesis of uniform layered protonated titanate hierarchical spheres and their transformation to anatase TiO 2 for lithium-ion batteries'. Together they form a unique fingerprint.

Cite this