Abstract
A temperature-directed micellar morphological transformation was developed using CABC multi-block copolymers with a hydrophobic block A, a hydrophilic block B, and a thermally responsive block C with a lower critical solution temperature (LCST). The micellar structure was switched from a star (below LCST) to a flower (above LCST). The transition temperature was tunable in a wide range (11–90 °C) by varying the C monomer composition. The large difference in the loading capacity between the star and flower enabled efficient encapsulation and controlled release of external molecules. Unlike conventional systems, the present star-to-flower transformation keeps micellar structures and hence does not liberate polymers but only external molecules selectively. Another application is a hidden functional segment. A functional segment is hidden (shielded) below the LCST and exposed to interact with external molecules or surfaces above the LCST.
Original language | English |
---|---|
Pages (from-to) | 1941-1949 |
Number of pages | 9 |
Journal | Angewandte Chemie - International Edition |
Volume | 59 |
Issue number | 5 |
DOIs | |
Publication status | Published - Jan 27 2020 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
Keywords
- block copolymers
- encapsulation
- hidden segments
- micellar morphological transformation
- polymerization