Abstract
Commercialized dressing materials with or without silver have played a passive role in early-phase wound healing, protecting the skin defects from infections, absorbing exudate, and preventing dehydration. Chitosan (CTS)-based sponges have been developed in pure or hybrid forms for accelerating wound healing, but their wound-healing capabilities have not been extensively compared with widely used commercial dressing materials, providing limited information in a practical aspect. In this study, we have developed CTS-silica (CTS-Si) hybrid sponges with water absorption, flexibility, and mechanical behavior similar to those of CTS sponges. In vitro and in vivo tests were performed to compare the CTS-Si sponges with three commercial dressing materials [gauze, polyurethane (PU), and silver-containing hydrofiber (HF-Ag)] in addition to CTS sponges. Both in vitro and in vivo tests showed that CTS-Si sponges promoted fibroblast proliferation, leading to accelerated collagen synthesis, whereas the CTS sponges did not exhibit significant differences in fibroblast proliferation and collagen synthesis from gauze, PU, and HF-Ag sponges. In case of CTS-Si, the inflammatory cells were actively recruited to the wound by the influence of the released silicon ions from CTS-Si sponges, which, in return, led to an enhanced secretion of growth factors, particularly TGF-β during the early stage. The higher level of TGF-β likely improved the proliferation of fibroblasts, and as a result, collagen synthesis by fibroblasts became remarkably productive, thereby increasing collagen density at the wound site. Therefore, the CTS-Si hybrid sponges have considerable potential as a wound-dressing material for accelerating wound healing.
Original language | English |
---|---|
Pages (from-to) | 1828-1839 |
Number of pages | 12 |
Journal | Journal of Biomedical Materials Research - Part B Applied Biomaterials |
Volume | 105 |
Issue number | 7 |
DOIs | |
Publication status | Published - Oct 2017 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2016 Wiley Periodicals, Inc.
ASJC Scopus Subject Areas
- Biomaterials
- Biomedical Engineering
Keywords
- chitosan-silica
- collagen synthesis
- hybrid sponges
- wound healing
- wound-dressing materials