The Auger process in multilayer WSe2 crystals

Yuanzheng Li, Jia Shi, Heyu Chen, Rui Wang, Yang Mi, Cen Zhang, Wenna Du, Shuai Zhang, Zheng Liu, Qing Zhang, Xiaohui Qiu, Haiyang Xu*, Weizhen Liu, Yichun Liu, Xinfeng Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Citations (Scopus)

Abstract

Multilayer WSe2 with a larger optical density of states and absorbance is regarded as a better candidate than its monolayer counterpart for next generation optoelectronic devices, however insight into carrier dynamics is still lacking. Herein, we experimentally observed an anomalous PL quenching with decreasing temperature for multilayer WSe2. At a low temperature (77 K), the Auger processes govern carrier recombination in multilayer WSe2, which are induced by a phonon bottleneck effect and strong photon absorption, and lead to PL quenching. From transient absorption spectroscopy, two distinct Auger processes are observed: a fast one (1-2 ps) and a slow one (>190 ps), which are caused by two different deep midgap defect-levels in WSe2. Based on the Auger recombination model, these two Auger rates are quantitatively estimated at ∼6.69 (±0.05) × 10-2 and 1.22 (±0.04) × 10-3 cm2 s-1, respectively. Our current observations provide an important supplement for optimizing the optical and electric behaviors in multilayer WSe2 based devices.

Original languageEnglish
Pages (from-to)17585-17592
Number of pages8
JournalNanoscale
Volume10
Issue number37
DOIs
Publication statusPublished - Oct 7 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 The Royal Society of Chemistry.

ASJC Scopus Subject Areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'The Auger process in multilayer WSe2 crystals'. Together they form a unique fingerprint.

Cite this