Abstract
We present an experimental investigation on a novel approach to produce micro-sized protrusive features atop a thermo-responsive shape memory polymer (SMP). This approach includes three steps, namely, indenting atop an SMP sample (using a Berkovich indenter in this study), polishing and then heating it for full shape recovery. Apart from ordinary samples, some SMP samples are pre-stretched in the in-plane direction or pre-compressed in the out-of-plane direction. The relationships between the height/shape of protrusion and the depth of indent are obtained for all indents in samples with/without pre-straining. Intrinsic relationships among the indentation depth, polishing depth and height/shape of protrusion are further revealed quantitatively in a dimensionless manner. The influence of pre-straining is discussed.
Original language | English |
---|---|
Article number | 057001 |
Journal | Smart Materials and Structures |
Volume | 17 |
Issue number | 5 |
DOIs | |
Publication status | Published - Oct 1 2008 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Signal Processing
- Civil and Structural Engineering
- Atomic and Molecular Physics, and Optics
- General Materials Science
- Condensed Matter Physics
- Mechanics of Materials
- Electrical and Electronic Engineering