The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction

Haoqing Cao, Kevin Mchugh, Sing Yian Chew, James M. Anderson

Research output: Contribution to journalArticlepeer-review

224 Citations (Scopus)

Abstract

Topographical cues play an important role in influencing cellular behavior and are considered as significant parameters to be controlled in tissue engineering applications. This work investigated the biocompatibility with regard to scaffold architecture and topographical effect of nanofibrous scaffolds on the in vivo and in vitro foreign body reaction. Random and aligned polycaprolactone (PCL) nanofibers were fabricated by electrospinning technique, with diameters of 313 ± 5 nm and 506 ± 24 nm, respectively. Primary monocytes isolated from five human donors were cultured on PCL nanofibers, PCL film, and RGD-coated glass in vitro and cell density and morphology was evaluated at time points of day 0 (2 h), day 3, day 7, and day 10. The in vivo study was carried out by implanting PCL nanofibers and film scaffolds subcutaneously in rats to test the biocompatibility and host response at time points of week 1, week 2, and week 4. The in vitro studies revealed that the initial monocyte adhesion on the aligned fiber scaffold was significantly less (p < 0.001) when compared to the random fiber scaffold. The in vivo study showed that the thicknesses of fibrous capsule on fibrous scaffolds were 7.55 ± 0.54 lm for aligned fibers and 4.13 ± 0.31 lm for random fibers, which were significantly thinner than that of film implants 37.7 ± 0.25 lm (p < 0.001). Additionally, cell infiltration was observed in aligned fibrous scaffolds both in vitro and in vivo, while on random fibers and films, distinct fibrous capsule boundaries were found on the surfaces. These results indicate that aligned electrospun nanofibers may serve as a promising scaffold for tissue engineering by minimizing host response, enhancing tissue-scaffold integration, and eliciting a thinner fibrous capsule.

Original languageEnglish
Pages (from-to)1151-1159
Number of pages9
JournalJournal of Biomedical Materials Research - Part A
Volume93
Issue number3
DOIs
Publication statusPublished - Jun 1 2010
Externally publishedYes

ASJC Scopus Subject Areas

  • Ceramics and Composites
  • Biomaterials
  • Biomedical Engineering
  • Metals and Alloys

Keywords

  • Cell infiltration
  • Electrospinning
  • Fibrous capsule
  • Foreign body reaction
  • Nanofiber
  • Nanotopography

Fingerprint

Dive into the research topics of 'The topographical effect of electrospun nanofibrous scaffolds on the in vivo and in vitro foreign body reaction'. Together they form a unique fingerprint.

Cite this