TY - JOUR
T1 - The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus
AU - Douzi, Badreddine
AU - Durand, Eric
AU - Bernard, Cédric
AU - Alphonse, Sébastien
AU - Cambillau, Christian
AU - Filloux, Alain
AU - Tegoni, Mariella
AU - Voulhoux, Romé
PY - 2009/12/11
Y1 - 2009/12/11
N2 - Gram-negative bacteria use the sophisticated type II secretion system (T2SS) to secrete a large number of exoproteins into the extracellular environment. Five proteins of the T2SS, the pseudopilins GspG-H-I-J-K, are proposed to assemble into a pseudopilus involved in the extrusion of the substrate through the outer membrane channel. Recent structural data have suggested that the three pseudopilins GspI-J-K are organized in a trimeric complex located at the tip of the GspG-containing pseudopilus. In the present work we combined two biochemical techniques to investigate the protein-protein interaction network between the five Pseudomonas aeruginosa Xcp pseudopilins. The soluble domains of XcpT-U-V-W-X (respectively homologous to GspG-H-I-J-K) were purified, and the interactions were tested by surface plasmon resonance and affinity co-purification in all possible combinations. We found an XcpVI-WJ-XK complex, which demonstrates that the crystallized trimeric complex also exists in the P. aeruginosa T2SS. Interestingly, our systematic approach revealed an additional and yet uncharacterized interaction between XcpUH and XcpWJ. This observation suggested the existence of a quaternary, rather than ternary, complex (XcpUH-VI-WJ-XK) at the tip of the pseudopilus. The assembly of this quaternary complex was further demonstrated by co-purification using affinity chromatography. Moreover, by testing various combinations of pseudopilins by surface plasmon resonance and affinity chromatography, we were able to dissect the different possible successive steps occurring during the formation of the quaternary complex. We propose a model in which XcpVI is the nucleator that first binds XcpXK and XcpWJ at different sites. Then the ternary complex recruits XcpUH through a direct interaction with XcpWJ.
AB - Gram-negative bacteria use the sophisticated type II secretion system (T2SS) to secrete a large number of exoproteins into the extracellular environment. Five proteins of the T2SS, the pseudopilins GspG-H-I-J-K, are proposed to assemble into a pseudopilus involved in the extrusion of the substrate through the outer membrane channel. Recent structural data have suggested that the three pseudopilins GspI-J-K are organized in a trimeric complex located at the tip of the GspG-containing pseudopilus. In the present work we combined two biochemical techniques to investigate the protein-protein interaction network between the five Pseudomonas aeruginosa Xcp pseudopilins. The soluble domains of XcpT-U-V-W-X (respectively homologous to GspG-H-I-J-K) were purified, and the interactions were tested by surface plasmon resonance and affinity co-purification in all possible combinations. We found an XcpVI-WJ-XK complex, which demonstrates that the crystallized trimeric complex also exists in the P. aeruginosa T2SS. Interestingly, our systematic approach revealed an additional and yet uncharacterized interaction between XcpUH and XcpWJ. This observation suggested the existence of a quaternary, rather than ternary, complex (XcpUH-VI-WJ-XK) at the tip of the pseudopilus. The assembly of this quaternary complex was further demonstrated by co-purification using affinity chromatography. Moreover, by testing various combinations of pseudopilins by surface plasmon resonance and affinity chromatography, we were able to dissect the different possible successive steps occurring during the formation of the quaternary complex. We propose a model in which XcpVI is the nucleator that first binds XcpXK and XcpWJ at different sites. Then the ternary complex recruits XcpUH through a direct interaction with XcpWJ.
UR - http://www.scopus.com/inward/record.url?scp=71749119395&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=71749119395&partnerID=8YFLogxK
U2 - 10.1074/jbc.M109.042366
DO - 10.1074/jbc.M109.042366
M3 - Article
C2 - 19828448
AN - SCOPUS:71749119395
SN - 0021-9258
VL - 284
SP - 34580
EP - 34589
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 50
ER -