Abstract
The thermal transport properties of a series of electron-doped CaMnO 3 perovskites have been investigated. Throughout the temperature range 5-300 K, phonon thermal conductivity is dominant, and both electron and spin wave contributions are negligible. The short phonon mean free paths in this system result in the relatively low thermal conductivities. The strong phonon scatterings stem from the A-site mismatch and bond-length fluctuations induced by local distortions of MnO6 octahedra. The thermal conductivity in the magnetically ordered state is enhanced as a result of the decrease in spin-phonon scattering. The results also indicate that above the magnetic ordering temperature, observable thermal excitation of optical phonons occurs. The contribution of optical phonons to thermal conductivity becomes non-negligible and is proposed to play an important role in the glass-like thermal transport behavior (i.e. positive temperature dependence of the thermal conductivity) in the paramagnetic state. These features can be understood in terms of an expression of thermal conductivity that includes both acoustic and optical phonon terms.
Original language | English |
---|---|
Pages (from-to) | 6306-6316 |
Number of pages | 11 |
Journal | Acta Materialia |
Volume | 58 |
Issue number | 19 |
DOIs | |
Publication status | Published - Nov 2010 |
Externally published | Yes |
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Ceramics and Composites
- Polymers and Plastics
- Metals and Alloys
Keywords
- Manganite perovskite
- MnO distortion
- Optical phonon
- Spin-phonon scattering
- Thermal conductivity