Abstract
The conversion of thermodynamically inert CO2 into methanol holds immense promise for addressing the pressing environmental and energy challenges of our time. This article offers a succinct overview of the development of single-atom catalysts (SACs) for thermochemical hydrogenation of CO2 to methanol, encompassing research advancements, advantages, potential hurdles, and other essential aspects related to these catalysts. Our aim of this work is to provide a deeper understanding of the intricacies of the catalytic structures of the single-atom sites and their unique structure-activity relationships in catalyzing the conversion of CO2 to methanol. We also present insights into the optimal design of SACs, drawing from our own research and those of fellow scientists.
Original language | English |
---|---|
Pages (from-to) | 23649-23662 |
Number of pages | 14 |
Journal | Journal of the American Chemical Society |
Volume | 146 |
Issue number | 34 |
DOIs | |
Publication status | Published - Aug 28 2024 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2024 American Chemical Society.
ASJC Scopus Subject Areas
- Catalysis
- General Chemistry
- Biochemistry
- Colloid and Surface Chemistry