Abstract
This study describes the synthesis, characterization and electronic properties of a novel series of soluble thieno[3,2-b]thiophene oligomers (1a and b and 2a and b) for thin film transistor (TFT) applications. All the compounds were synthesized in high yield using Pd-catalyzed Stille or Suzuki coupling reactions and were substituted by two dodecyl groups at the 3- or 4-position of the thiophene unit to ensure the solubility for facile device fabrication. Aryl units such as phenyl and naphthyl were used for ' end-capping’ to provide stability against oxidation. The design of these materials has focused on their self-assembly and solution processability. All the compounds have been characterized by 1H, 13C NMR, and elemental analysis. Their electronic and optical properties were investigated using UV-Vis and photoluminescence spectroscopy, cyclic voltammetry, thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC). High-resolution STM images of 1a and 2a adsorbed on HOPG revealed highly ordered self-organized domains. Two-dimensional wide-angle X-ray scattering (2D-WAXS) was used to study the solid state packing of 1a and 2a. Top-contact OTFT devices from 1a were prepared by spin coating and showed promising behaviour with mobilities up to 3.11 × 10-2 cm2 V-1 s-1 and on/off ratios up to 104.
Original language | English |
---|---|
Pages (from-to) | 3449-3456 |
Number of pages | 8 |
Journal | Journal of Materials Chemistry |
Volume | 19 |
Issue number | 21 |
DOIs | |
Publication status | Published - May 21 2009 |
Externally published | Yes |
ASJC Scopus Subject Areas
- General Chemistry
- Materials Chemistry