Abstract
Rapid charging capability is a requisite feature of lithium-ion batteries (LIBs). To overcome the capacity degradation from a steep Li-ion concentration gradient during the fast reaction, electrodes with tailored transport kinetics have been explored by managing the geometries. However, the traditional electrode fabrication process has great challenges in precisely controlling and implementing the desired pore networks and configuration of electrode materials. Herein, we demonstrate a density-graded composite electrode that arises from a three-dimensional current collector in which the porosity gradually decreases to 53.8% along the depth direction. The density-graded electrode effectively reduces energy loss at high charging rates by mitigating polarization. This electrode shows an outstanding capacity of 94.2 mAh g-1 at a fast current density of 59.7 C (20 A g-1), which is much higher than that of an electrode with a nearly constant density gradient (38.0 mAh g-1). Through these in-depth studies on the pore networks and their transport kinetics, we describe the design principle of rational electrode geometries for ultrafast charging LIBs.
Original language | English |
---|---|
Pages (from-to) | 9762-9771 |
Number of pages | 10 |
Journal | ACS Nano |
Volume | 16 |
Issue number | 6 |
DOIs | |
Publication status | Published - Jun 28 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 American Chemical Society.
ASJC Scopus Subject Areas
- General Materials Science
- General Engineering
- General Physics and Astronomy
Keywords
- charge carrier transport
- concentration polarization
- density-graded structures
- lithium-ion batteries
- porosity gradients
- three-dimensional current collectors