Abstract
In this article, a new application of using S, N co-doped graphene quantum dots (S, N-GQDs) as ideal color converters in solid-state white light-emitting diode (WLED) is reported. To this end, the S, N-GQDs with an average diameter of ∼4.46 nm are obtained by a hydrothermal approach using citric acid and thiourea as source materials. The PL spectra of S, N-GQDs show an excitation-independent behavior in the range of 300–380 nm. Under UV illumination, the S, N-GQDs display intense blue-light with the quantum yield of 51.2%. The PL mechanism is also investigated. Then, we fabricate freestanding luminescent composite films in a solution casting method by combining S, N-GQDs with YAG:Ce3+ phosphors based on a polyvinyl alcohol (PVA) matrix. The luminescent films have superior foldability and photostability and excellent heat resistance, and retain their optical performances in the solid-state. To realize their potential, a high-powered remote WLED has been demonstrated. The results indicate that S, N-GQDs and YAG:Ce3+ can be homogeneously dispersed in the PVA without aggregation so that uniform white-light emission can be obtained. These composite films containing S, N-GQDs are promising to be used in state-of-the-art UV-pumped remote WLED according to their wide wavelength emission and collapsible illumination device.
Original language | English |
---|---|
Pages (from-to) | 406-415 |
Number of pages | 10 |
Journal | Chemical Engineering Journal |
Volume | 336 |
DOIs | |
Publication status | Published - Mar 15 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 Elsevier B.V.
ASJC Scopus Subject Areas
- General Chemistry
- Environmental Chemistry
- General Chemical Engineering
- Industrial and Manufacturing Engineering
Keywords
- Flexibility
- Luminescent composite films
- Remote WLED
- S,N-GQDs
- Solid-state lighting