Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water

Zhao Tang, Ze hua Liu*, Hao Wang, Zhi Dang, Hua Yin, Yan Zhou, Yu Liu

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

64 Citations (Scopus)

Abstract

As endocrine disruptors, natural estrogens including estrone (E1), 17β-estradiol (E2), and estriol (E3) in wastewaters of municipal wastewater treatment plant (WWTP) as well as other environmental matrix have been widely studied. However, the far-less studied natural estrogens such as 2-hydroxyestrone (2OHE1), 16α-hydroxyestrone (16α-OHE1), 4-hydroxyestrone (4OHE1), etc., found in human urine have been almost ignored. Therefore, it is important to investigate the occurrence of these far-less studied natural estrogens in municipal WWTP and other environment. In this study, a GC-MS analytical method was firstly established and validated for trace determination of eleven natural estrogens in waste and surface waters, including E1, E2, E3, 2OHE1, 16α-OHE1, 4OHE1, 2-hydroxyestradiol (2OHE2), 4-hydroxyestradiol (4OHE2), 17-epiestriol (17epiE3), 16-epiestriol (16epiE3), and 16keto-estradiol (16ketoE2). All the eleven natural estrogens were detected in the influent of one municipal WWTP, which ranged from 7.9 to 62.9 ng/L. The top five natural estrogens in the influent were E1, E3, 16α-OHE1, 16ketoE2, and 2OHE1 with respective concentrations of 62.9, 62.6, 46.9, 32.7, and 28.8 ng/L. Most of them were detected in both the effluent and river water, in which their detected concentrations were n.d-14.7 and n.d-51.7 ng/L, respectively. This work is the first to indicate that the so far less commonly studied natural estrogens in the environment likely pose adverse health effect on humans and wildlife due to their relative strong estrogenic potencies and high levels in wastewater and river water. More work should be done to understand their removals in municipal WWTPs and their occurrence in surface waters.

Original languageEnglish
Article number115976
JournalWater Research
Volume182
DOIs
Publication statusPublished - Sept 1 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020 Elsevier Ltd

ASJC Scopus Subject Areas

  • Environmental Engineering
  • Civil and Structural Engineering
  • Ecological Modelling
  • Water Science and Technology
  • Waste Management and Disposal
  • Pollution

Keywords

  • 16keto-estadiol
  • 16α-hydroxyestrone
  • Endocrine disruption
  • GC-MS
  • River water
  • Wastewater

Fingerprint

Dive into the research topics of 'Trace determination of eleven natural estrogens and insights from their occurrence in a municipal wastewater treatment plant and river water'. Together they form a unique fingerprint.

Cite this