Transformation of hard pollen into soft matter

Teng Fei Fan, Soohyun Park, Qian Shi, Xingyu Zhang, Qimin Liu, Yoohyun Song, Hokyun Chin, Mohammed Shahrudin Bin Ibrahim, Natalia Mokrzecka, Yun Yang, Hua Li, Juha Song, Subra Suresh*, Nam Joon Cho

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

82 Citations (Scopus)

Abstract

Pollen’s practically-indestructible shell structure has long inspired the biomimetic design of organic materials. However, there is limited understanding of how the mechanical, chemical, and adhesion properties of pollen are biologically controlled and whether strategies can be devised to manipulate pollen beyond natural performance limits. Here, we report a facile approach to transform pollen grains into soft microgel by remodeling pollen shells. Marked alterations to the pollen substructures led to environmental stimuli responsiveness, which reveal how the interplay of substructure-specific material properties dictates microgel swelling behavior. Our investigation of pollen grains from across the plant kingdom further showed that microgel formation occurs with tested pollen species from eudicot plants. Collectively, our experimental and computational results offer fundamental insights into how tuning pollen structure can cause dramatic alterations to material properties, and inspire future investigation into understanding how the material science of pollen might influence plant reproductive success.

Original languageEnglish
Article number1449
JournalNature Communications
Volume11
Issue number1
DOIs
Publication statusPublished - Dec 1 2020
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2020, The Author(s).

ASJC Scopus Subject Areas

  • General Chemistry
  • General Biochemistry,Genetics and Molecular Biology
  • General Physics and Astronomy

Fingerprint

Dive into the research topics of 'Transformation of hard pollen into soft matter'. Together they form a unique fingerprint.

Cite this