Abstract
Unsupervised image-to-image translation aims at learning a mapping between two visual domains. However, learning a translation across large geometry variations al-ways ends up with failure. In this work, we present a novel disentangle-and-translate framework to tackle the complex objects image-to-image translation task. Instead of learning the mapping on the image space directly, we disentangle image space into a Cartesian product of the appearance and the geometry latent spaces. Specifically, we first in-troduce a geometry prior loss and a conditional VAE loss to encourage the network to learn independent but com-plementary representations. The translation is then built on appearance and geometry space separately. Extensive experiments demonstrate the superior performance of our method to other state-of-the-art approaches, especially in the challenging near-rigid and non-rigid objects translation tasks. In addition, by taking different exemplars as the ap-pearance references, our method also supports multimodal translation. Project page: https://wywu.github. io/projects/TGaGa/TGaGa.html.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
Publisher | IEEE Computer Society |
Pages | 8004-8013 |
Number of pages | 10 |
ISBN (Electronic) | 9781728132938 |
DOIs | |
Publication status | Published - Jun 2019 |
Externally published | Yes |
Event | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States Duration: Jun 16 2019 → Jun 20 2019 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2019-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 |
---|---|
Country/Territory | United States |
City | Long Beach |
Period | 6/16/19 → 6/20/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition
Keywords
- And Body Pose
- Deep Learning
- Face
- Gesture
- Image and Video Synthesis
- Representation Learning
- Vision Applications and Syst