Abstract
The nonstructural (NS) protein NS4A in flaviviruses is a membrane protein that is critical for virulence, and, among other roles, it participates in membrane morphogenesis. In dengue virus (DENV), the NS4A hydrophilic N-terminal tail, together with the first transmembrane domain, is involved in both homo-oligomerization and hetero-oligomerization with NS4B. In both DENV and Zika virus (ZIKV), this N-terminal tail (residues 1-48) forms a random coil in solution but becomes mostly α-helical upon interaction with detergents or lipid membranes. Herein, we show that a peptide from ZIKV NS4A that spans residues 4-58, which includes most of the N-terminal tail and a third of its first transmembrane domain, forms homotrimers in the absence of detergents or liposomes. After interaction with the latter, α-helical content increases, consistent with binding. The oligomeric size of NS4A is not known, as it has only been reported in SDS gels. Therefore, we propose that full-length NS4A forms homotrimers mediated by this region, and that disruption of the oligomerization of peptide ZIKV NS4A 4-58 in solution can potentially constitute the basis for an in vitro assay to discover antivirals.
Original language | English |
---|---|
Article number | 335 |
Journal | Membranes |
Volume | 11 |
Issue number | 5 |
DOIs | |
Publication status | Published - May 2021 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2021 by the authors. Licensee MDPI, Basel, Switzerland.
ASJC Scopus Subject Areas
- Chemical Engineering (miscellaneous)
- Process Chemistry and Technology
- Filtration and Separation
Keywords
- Amphipathic helices
- Liposomes
- NS4A
- Oligomerization
- Zika virus