Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: Formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis

P. Suresh Kumar, S. A.Syed Nizar, J. Sundaramurthy, P. Ragupathy, V. Thavasi*, S. G. Mhaisalkar, S. Ramakrishna

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Highly crystalline hierarchical TiO2 nanostructures of morphology ranging from one-dimensional regular fibers, hollow tubes, porous rods and spindles were achieved from electrospun TiO2/composite fibers by annealing at temperatures ranging from 400°C, 500°C, 600°C, 700°C, and 800°C, with a ramp rate of 5°C min -1, and at a pressure of 1 mbar. Crystallographic structure, crystallite size, surface morphology and surface area of annealed TiO 2 nanostructures were analysed by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FESEM), high-resolution transmission electron microscopy (HRTEM) and Brunauer-Emmett-Teller (BET) method. The analysis of post-annealing process on electrospun TiO2 nanofibers showed an orderly change in the crystallographic phase transformation with corresponding change in their surface morphologies. XRD and HRTEM analysis confirmed the phase transformation of highly crystalline anatase phase to rutile with crystallite size varied from 11 nm to 36 nm upon tuning the annealing temperature. Interestingly, TiO2 nanostructures annealed at 700°C showed the formation of biphasic TiO2 hollow tubes with stoichiometry phase compositions of 45.74% anatase and 54.25% rutile. A possible formation mechanism was proposed based on series of temperature-dependent experiments. To evaluate the potential use of these TiO2 nanostructures, dye sensitized solar cell (DSSC) was fabricated using the post-annealed TiO2 nanostructures as photoanode. A higher conversion efficiency (η) of 4.56% with a short circuit current (Jsc) of 8.61 mA cm-2 was observed for highly ordered porous anatase TiO 2 nanorods obtained upon annealing at 500°C under simulated AM1.5 G (100 mW cm-2), confirming that surface area of TiO2 resulted out of porous structure played dominant role.

Original languageEnglish
Pages (from-to)9784-9790
Number of pages7
JournalJournal of Materials Chemistry
Volume21
Issue number26
DOIs
Publication statusPublished - Jul 14 2011
Externally publishedYes

ASJC Scopus Subject Areas

  • General Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Tunable hierarchical TiO2 nanostructures by controlled annealing of electrospun fibers: Formation mechanism, morphology, crystallographic phase and photoelectrochemical performance analysis'. Together they form a unique fingerprint.

Cite this