Two birds with one stone: Engineering polymeric carbon nitride with n-π∗ electronic transition for extending light absorption and reducing charge recombination

Gege Zhao, Bangwang Li, Xiaonan Yang, Xiaomeng Zhang, Zhongfei Li, Daochuan Jiang, Haiwei Du, Chuhong Zhu, Huiquan Li*, Can Xue, Yupeng Yuan*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

50 Citations (Scopus)

Abstract

The weak visible light harvesting and high charge recombination are two main problems that lead to a low photocatalytic H2 generation of polymeric carbon nitride (p-CN). To date, the approaches that are extensively invoked to address this problem mainly rely on heteroatom-doping and heterostructures, and it remains a grand challenge in regulating dopant-free p-CN for increasing H2 generation. Here, we report utilizing the inherent n-π∗ electronic transition to simultaneously realize extended light absorption and reduced charge recombination on p-CN nanosheets. Such n-π∗ electronic transition yields a new absorption peak of 490 ​nm, which extends the light absorption edge of p-CN to approximately 590 ​nm. Meanwhile, as revealed by the photoluminescence (PL) spectra of p-CN at the single-particle level, the n-π∗ electronic transition gives rise to an almost quenched PL signal at room temperature, unravelling a dramatically reduced charge recombination. As a consequence, a remarkably improved photocatalytic performance is realized under visible light irradiation, with a H2 generation rate of 5553 ​μmol ​g−1∙h−1, ∼ 12 times higher than that of pristine p-CN (460 ​μmol∙g−1∙h−1) in the absence of the n-π∗ transition. This work illustrates the highlights of using the inherent n-π∗ electronic transition to improve the photocatalytic performance of dopant-free carbon nitrides.

Original languageEnglish
Article number100077
JournalAdvanced Powder Materials
Volume2
Issue number1
DOIs
Publication statusPublished - Jan 2023
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 Central South University.

ASJC Scopus Subject Areas

  • Catalysis
  • Ceramics and Composites
  • Materials Science (miscellaneous)
  • Energy (miscellaneous)
  • Surfaces, Coatings and Films
  • Metals and Alloys

Keywords

  • Charge separation
  • Microwave
  • Molecule self-assembly
  • n-π∗ electronic transition
  • Polymeric carbon nitride

Fingerprint

Dive into the research topics of 'Two birds with one stone: Engineering polymeric carbon nitride with n-π∗ electronic transition for extending light absorption and reducing charge recombination'. Together they form a unique fingerprint.

Cite this