Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays

Yaowu Hu, Prashant Kumar, Rong Xu, Kejie Zhao, Gary J. Cheng*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

Fabrication of plasmonic nanostructures has been an important topic for their potential applications in photonic and optoelectronic devices. Among plasmonic materials, gold is one of the most promising materials due to its low ohmic loss at optical frequencies and high oxidation resistance. However, there are two major bottlenecks for its industrial applications: (1) the need for large-scale fabrication technology for high-precision plasmonic nanostructures; and (2) the need to integrate the plasmonic nanostructures on various substrates. While conventional top-down approaches involve high cost and give low throughput, bottom-up approaches suffer from irreproducibility and low precision. Herein, we report laser shock induced direct imprinting of large-area plasmonic nanostructures from physical vapor deposited (PVD) gold thin film on a flexible commercial free-standing aluminum foil. Among the important characteristics of the laser-shock direct imprinting is their unique capabilities to reproducibly deliver designer plasmonic nanostructures with extreme precision and in an ultrafast manner. Excellent size tunability (from several μm down to 15 nm) has been achieved by varying mold dimensions and laser parameters. The physical mechanism of the hybrid film imprinting is elaborated by finite element modeling. A mechanical robustness test of the hybrid film validates a significantly improved interfacial contact between gold arrays and the underlying substrate. The strong optical field enhancement was realized in the large-area fabricated engineered gold nanostructures. Low concentration molecular sensing was investigated employing the fabricated structures as surface-enhanced Raman scattering (SERS) substrates. The ability to ultrafast direct imprint plasmonic nanoarrays on a flexible substrate at multiscale is a critical step towards roll-to-roll manufacturing of multi-functional devices which is poised to inspire several emerging applications.

Original languageEnglish
Pages (from-to)172-182
Number of pages11
JournalNanoscale
Volume8
Issue number1
DOIs
Publication statusPublished - Jan 7 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2016 The Royal Society of Chemistry.

ASJC Scopus Subject Areas

  • General Materials Science

Fingerprint

Dive into the research topics of 'Ultrafast direct fabrication of flexible substrate-supported designer plasmonic nanoarrays'. Together they form a unique fingerprint.

Cite this