Abstract
Herein, the hydrothermal synthesis of porous ultrathin ternary NiFeV layer double hydroxides (LDHs) nanosheets grown on Nickel foam (NF) substrate as a highly efficient electrode toward overall water splitting in alkaline media is reported. The lateral size of the nanosheets is about a few hundreds of nanometers with the thickness of ≈10 nm. Among all molar ratios investigated, the Ni0.75Fe0.125V0.125-LDHs/NF electrode depicts the optimized performance. It displays an excellent catalytic activity with a modest overpotential of 231 mV for the oxygen evolution reaction (OER) and 125 mV for the hydrogen evolution reaction (HER) in 1.0 m KOH electrolyte. Its exceptional activity is further shown in its small Tafel slope of 39.4 and 62.0 mV dec−1 for OER and HER, respectively. More importantly, remarkable durability and stability are also observed. When used for overall water splitting, the Ni0.75Fe0.125V0.125-LDHs/NF electrodes require a voltage of only 1.591 V to reach 10 mA cm−2 in alkaline solution. These outstanding performances are mainly attributed to the synergistic effect of the ternary metal system that boosts the intrinsic catalytic activity and active surface area. This work explores a promising way to achieve the optimal inexpensive Ni-based hydroxide electrocatalyst for overall water splitting.
Original language | English |
---|---|
Article number | 1703257 |
Journal | Small |
Volume | 14 |
Issue number | 8 |
DOIs | |
Publication status | Published - Feb 22 2018 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Biotechnology
- General Chemistry
- Biomaterials
- General Materials Science
Keywords
- 2D materials
- electrocatalysis
- layer double hydroxides
- overall water splitting
- porous nanosheets