Abstract
Deformable convolution, originally proposed for the adaptation to geometric variations of objects, has recently shown compelling performance in aligning multiple frames and is increasingly adopted for video super-resolution. Despite its remarkable performance, its underlying mechanism for alignment remains unclear. In this study, we carefully investigate the relation between deformable alignment and the classic flow-based alignment. We show that deformable convolution can be decomposed into a combination of spatial warping and convolution. This decomposition reveals the commonality of deformable alignment and flow-based alignment in formulation, but with a key difference in their offset diversity. We further demonstrate through experiments that the increased diversity in deformable alignment yields better-aligned features, and hence significantly improves the quality of video super-resolution output. Based on our observations, we propose an offset-fidelity loss that guides the offset learning with optical flow. Experiments show that our loss successfully avoids the overflow of offsets and alleviates the instability problem of deformable alignment. Aside from the contributions to deformable alignment, our formulation inspires a more flexible approach to introduce offset diversity to flow-based alignment, improving its performance.
Original language | English |
---|---|
Title of host publication | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
Publisher | Association for the Advancement of Artificial Intelligence |
Pages | 973-981 |
Number of pages | 9 |
ISBN (Electronic) | 9781713835974 |
DOIs | |
Publication status | Published - 2021 |
Externally published | Yes |
Event | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online Duration: Feb 2 2021 → Feb 9 2021 |
Publication series
Name | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
Volume | 2A |
Conference
Conference | 35th AAAI Conference on Artificial Intelligence, AAAI 2021 |
---|---|
City | Virtual, Online |
Period | 2/2/21 → 2/9/21 |
Bibliographical note
Publisher Copyright:Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved
ASJC Scopus Subject Areas
- Artificial Intelligence