Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World Video Super-Resolution

Shangchen Zhou, Peiqing Yang, Jianyi Wang, Yihang Luo, Chen Change Loy

Research output: Chapter in Book/Report/Conference proceedingConference contribution

22 Citations (Scopus)

Abstract

Text-based diffusion models have exhibited remarkable success in generation and editing, showing great promise for enhancing visual content with their generative prior. However, applying these models to video super-resolution remains challenging due to the high demands for output fidelity and temporal consistency, which is complicated by the inherent randomness in diffusion models. Our study introduces Upscale-A-Video, a text-guided latent diffusion framework for video upscaling. This framework ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences; globally, without training, a flow-guided recurrent latent propagation module is introduced to enhance overall video stability by propagating and fusing latent across the entire sequences. Thanks to the diffusion paradigm, our model also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation, enabling a trade-off between fidelity and quality. Extensive experiments show that Upscale-A-Video surpasses existing methods in both synthetic and real-world benchmarks, as well as in AI-generated videos, showcasing impressive visual realism and temporal consistency.

Original languageEnglish
Title of host publicationProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
PublisherIEEE Computer Society
Pages2535-2545
Number of pages11
ISBN (Electronic)9798350353006
DOIs
Publication statusPublished - 2024
Externally publishedYes
Event2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, United States
Duration: Jun 16 2024Jun 22 2024

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Conference

Conference2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Country/TerritoryUnited States
CitySeattle
Period6/16/246/22/24

Bibliographical note

Publisher Copyright:
© 2024 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • Video Diffusion Model
  • Video Super-Resolution

Cite this