Abstract
Affordable energy storage is crucial for a variety of technologies. One option is sodium-ion batteries (NIBs) for which, however, suitable anode materials are still a problem. We report on the application of a promising new class of materials, polyoxometalates (POMs), as an anode in NIBs. Specifically, Na6[V10O28]·16H2O is being synthesized and characterized. Galvanostatic tests reveal a reversible capacity of approximately 276 mA h g-1 with an average discharge potential of 0.4 V vs. Na/Na+, as well as a high cycling stability. The underlying mechanism is rationalized to be an insertion of Na+ in between the [V10O28]6- anions rather than an intercalation into a crystal structure; the accompanying reduction of V+V to V+IV is confirmed by X-ray Photoelectron Spectroscopy. Finally, a working full-cell set-up is presented with the POM as the anode, substantiating the claim that Na6[V10O28]·16H2O is a promising option for future high-performing sodium-ion batteries.
Original language | English |
---|---|
Pages (from-to) | 270-277 |
Number of pages | 8 |
Journal | Journal of Power Sources |
Volume | 288 |
DOIs | |
Publication status | Published - Aug 15 2015 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2015 Elsevier B.V. All rights reserved.
ASJC Scopus Subject Areas
- Renewable Energy, Sustainability and the Environment
- Energy Engineering and Power Technology
- Physical and Theoretical Chemistry
- Electrical and Electronic Engineering
Keywords
- Cluster electrodes
- Hybrid electrode materials
- Polyoxometalates
- Sodium-ion batteries
- Sodium-ion battery anodes