Abstract
This paper presents Video K-Net, a simple, strong, and unified framework for fully end-to-end video panoptic seg-mentation. The method is built upon K-Net, a method that unifies image segmentation via a group of learnable ker-nels. We observe that these learnable kernels from K-Net, which encode object appearances and contexts, can naturally associate identical instances across video frames. Motivated by this observation, Video K-Net learns to simultaneously segment and track 'things' and 'stuff' in a video with simple kernel-based appearance modeling and cross-temporal kernel interaction. Despite the simplicity, it achieves state-of-the-art video panoptic segmentation results on Citscapes-VPS and KITTI-STEP without bells and whistles. In particular on KITTI-STEP, the simple method can boost almost 12% relative improvements over previous methods. We also validate its generalization on video semantic segmentation, where we boost various baselines by 2% on the VSPW dataset. Moreover, we extend K-Net into clip-level video framework for video instance segmentation where we obtain 40.5% for ResNet50 backbone and 51.5% mAP for Swin-base on YouTube-2019 validation set. We hope this simple yet effective method can serve as a new flexible baseline in video segmentation.11Both code and models are released at here.
Original language | English |
---|---|
Title of host publication | Proceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
Publisher | IEEE Computer Society |
Pages | 18825-18835 |
Number of pages | 11 |
ISBN (Electronic) | 9781665469463 |
DOIs | |
Publication status | Published - 2022 |
Externally published | Yes |
Event | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States Duration: Jun 19 2022 → Jun 24 2022 |
Publication series
Name | Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
---|---|
Volume | 2022-June |
ISSN (Print) | 1063-6919 |
Conference
Conference | 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 |
---|---|
Country/Territory | United States |
City | New Orleans |
Period | 6/19/22 → 6/24/22 |
Bibliographical note
Publisher Copyright:© 2022 IEEE.
ASJC Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition
Keywords
- grouping and shape analysis
- Scene analysis and understanding
- Segmentation
- Video analysis and understanding
- Vision applications and systems