Video K-Net: A Simple, Strong, and Unified Baseline for Video Segmentation

Xiangtai Li, Wenwei Zhang, Jiangmiao Pang, Kai Chen, Guangliang Cheng*, Yunhai Tong*, Chen Change Loy

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contribution

74 Citations (Scopus)

Abstract

This paper presents Video K-Net, a simple, strong, and unified framework for fully end-to-end video panoptic seg-mentation. The method is built upon K-Net, a method that unifies image segmentation via a group of learnable ker-nels. We observe that these learnable kernels from K-Net, which encode object appearances and contexts, can naturally associate identical instances across video frames. Motivated by this observation, Video K-Net learns to simultaneously segment and track 'things' and 'stuff' in a video with simple kernel-based appearance modeling and cross-temporal kernel interaction. Despite the simplicity, it achieves state-of-the-art video panoptic segmentation results on Citscapes-VPS and KITTI-STEP without bells and whistles. In particular on KITTI-STEP, the simple method can boost almost 12% relative improvements over previous methods. We also validate its generalization on video semantic segmentation, where we boost various baselines by 2% on the VSPW dataset. Moreover, we extend K-Net into clip-level video framework for video instance segmentation where we obtain 40.5% for ResNet50 backbone and 51.5% mAP for Swin-base on YouTube-2019 validation set. We hope this simple yet effective method can serve as a new flexible baseline in video segmentation.11Both code and models are released at here.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
PublisherIEEE Computer Society
Pages18825-18835
Number of pages11
ISBN (Electronic)9781665469463
DOIs
Publication statusPublished - 2022
Externally publishedYes
Event2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022 - New Orleans, United States
Duration: Jun 19 2022Jun 24 2022

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2022-June
ISSN (Print)1063-6919

Conference

Conference2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022
Country/TerritoryUnited States
CityNew Orleans
Period6/19/226/24/22

Bibliographical note

Publisher Copyright:
© 2022 IEEE.

ASJC Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

Keywords

  • grouping and shape analysis
  • Scene analysis and understanding
  • Segmentation
  • Video analysis and understanding
  • Vision applications and systems

Cite this