Abstract
Atomic-layered materials, such as high-quality bismuth oxychalcogenides, which are composed of oppositely charged alternate layers grown using chemical vapor deposition, have attracted considerable attention. Their physical properties are well-suited for high-speed, low-power-consumption optoelectronic devices, and the rapid determination of their crystallographic characteristics is crucial for scalability and integration. In this study, we introduce how the crystallographic structure and quality of such materials can be projected through Raman spectroscopy analysis. Frequency modes at ∼55, ∼78, ∼360, and ∼434 cm-1were detected, bearing out theoretical calculations from the literature. The low-frequency modes positioned at 55 and 78 cm-1were activated by structural defects, such as grain boundaries and O-rich edges in the Bi2O2Se crystals, accompanied by sensitivity to the excitation energy. Furthermore, the line defects at ∼55 cm-1exhibited a strong 2-fold polarization dependence, similar to graphene/graphite edges. Our results can help illuminate the mechanism for activating the Raman-active mode from the infrared active mode by defects, as well as the electronic structures of these two-dimensional layered materials. We also suggest that the nanoscale width line defects in Bi2O2Se can be visualized using Raman spectroscopy.
Original language | English |
---|---|
Pages (from-to) | 3637-3646 |
Number of pages | 10 |
Journal | ACS Nano |
Volume | 16 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 22 2022 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2022 American Chemical Society. All rights reserved.
ASJC Scopus Subject Areas
- General Materials Science
- General Engineering
- General Physics and Astronomy
Keywords
- BiOSe
- defects
- low-frequency Raman modes
- polarized Raman spectroscopy
- synthesis