VToonify: Controllable high-resolution portrait video style transfer

Shuai Yang, Liming Jiang, Ziwei Liu, Chen Change Loy

Research output: Contribution to journalArticlepeer-review

53 Citations (Scopus)

Abstract

Generating high-quality artistic portrait videos is an important and desirable task in computer graphics and vision. Although a series of successful portrait image toonification models built upon the powerful StyleGAN have been proposed, these image-oriented methods have obvious limitations when applied to videos, such as the fixed frame size, the requirement of face alignment, missing non-facial details and temporal inconsistency. In this work, we investigate the challenging controllable high-resolution portrait video style transfer by introducing a novel VToonify framework. Specifically, VToonify leverages the mid-and high-resolution layers of StyleGAN to render high-quality artistic portraits based on the multi-scale content features extracted by an encoder to better preserve the frame details. The resulting fully convolutional architecture accepts non-Aligned faces in videos of variable size as input, contributing to complete face regions with natural motions in the output. Our framework is compatible with existing StyleGAN-based image toonification models to extend them to video toonification, and inherits appealing features of these models for flexible style control on color and intensity. This work presents two instantiations of VToonify built upon Toonify and DualStyleGAN for collection-based and exemplar-based portrait video style transfer, respectively. Extensive experimental results demonstrate the effectiveness of our proposed VToonify framework over existing methods in generating high-quality and temporally-coherent artistic portrait videos with flexible style controls. Code and pretrained models are available at our project page: www.mmlab-ntu.com/project/vtoonify/.

Original languageEnglish
Article number203
JournalACM Transactions on Graphics
Volume41
Issue number6
DOIs
Publication statusPublished - Nov 30 2022
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2022 ACM.

ASJC Scopus Subject Areas

  • Computer Graphics and Computer-Aided Design

Keywords

  • exemplar-based
  • face toonification
  • model distillation
  • StyleGAN

Cite this