Abstract
Conjugated polymer-based photocatalysts have shown great potential in H2 production via water splitting, but an intrinsic drawback of conventional hydrophobic polymer photocatalysts is their poor wettability and relatively large particle size in aqueous media, which is favorable for charge recombination with limited interfacial reaction efficiency. Herein, a well-dispersed organic water reduction system using cationic conjugated polyelectrolyte as the photocatalyst has been reported for the first time. In comparison to a model polymer (PFBT) bearing the same conjugated backbone, the polyelectrolyte exhibits significantly enhanced photocatalytic efficiency due to the extended light absorption and improved charge separation of the polymer aggregates.
Original language | English |
---|---|
Article number | 1800255 |
Journal | Solar RRL |
Volume | 3 |
Issue number | 3 |
DOIs | |
Publication status | Published - Mar 1 2019 |
Externally published | Yes |
Bibliographical note
Publisher Copyright:© 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ASJC Scopus Subject Areas
- Electronic, Optical and Magnetic Materials
- Atomic and Molecular Physics, and Optics
- Energy Engineering and Power Technology
- Electrical and Electronic Engineering
Keywords
- conjugated polyelectrolyte
- visible-light hydrogen production
- water-dispersed