wnt10a is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis

Erica L. Benard, Ismail Küçükaylak, Julia Hatzold, Kilian U.W. Berendes, Thomas J. Carney, Filippo Beleggia, Matthias Hammerschmidt*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Mutations of human WNT10A are associated with odonto-ectodermal dysplasia syndromes. Here, we present analyses of wnt10a loss-of-function mutants in the zebrafish. Results: wnt10a mutant zebrafish embryos display impaired tooth development and a collapsing median fin fold (MFF). Rescue experiments show that wnt10a is essential for MFF maintenance both during embryogenesis and later metamorphosis. The MFF collapse could not be attributed to increased cell death or altered proliferation rates of MFF cell types. Rather, wnt10a mutants show reduced expression levels of dlx2a in distal-most MFF cells, followed by compromised expression of col1a1a and other extracellular matrix proteins encoding genes. Transmission electron microscopy analysis shows that although dermal MFF compartments of wnt10a mutants initially are of normal morphology, with regular collagenous actinotrichia, positioning of actinotrichia within the cleft of distal MFF cells becomes compromised, coinciding with actinotrichia shrinkage and MFF collapse. Conclusions: MFF collapse of wnt10a mutant zebrafish is likely caused by the loss of distal properties in the developing MFF, strikingly similar to the proposed molecular pathomechanisms underlying the teeth defects caused by the loss of Wnt10 in fish and mammals. In addition, it points to thus fur unknown mechanisms controlling the linear growth and stability of actinotrichia and their collagen fibrils.

Original languageEnglish
Pages (from-to)566-592
Number of pages27
JournalDevelopmental Dynamics
Volume253
Issue number6
DOIs
Publication statusPublished - Jun 2024
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2023 The Authors. Developmental Dynamics published by Wiley Periodicals LLC on behalf of American Association for Anatomy.

ASJC Scopus Subject Areas

  • Developmental Biology

Keywords

  • fin metamorphosis
  • median fin fold
  • tooth development
  • wnt10a
  • zebrafish

Fingerprint

Dive into the research topics of 'wnt10a is required for zebrafish median fin fold maintenance and adult unpaired fin metamorphosis'. Together they form a unique fingerprint.

Cite this