TY - JOUR
T1 - ZIF-Induced d-Band Modification in a Bimetallic Nanocatalyst
T2 - Achieving Over 44 % Efficiency in the Ambient Nitrogen Reduction Reaction
AU - Sim, Howard Yi Fan
AU - Chen, Jaslyn Ru Ting
AU - Koh, Charlynn Sher Lin
AU - Lee, Hiang Kwee
AU - Han, Xuemei
AU - Phan-Quang, Gia Chuong
AU - Pang, Jing Yi
AU - Lay, Chee Leng
AU - Pedireddy, Srikanth
AU - Phang, In Yee
AU - Yeow, Edwin Kok Lee
AU - Ling, Xing Yi
N1 - Publisher Copyright:
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
PY - 2020/9/21
Y1 - 2020/9/21
N2 - The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d-band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of '44 % with high ammonia yield rate of '161 μg mgcat−1 h−1 under ambient conditions. The strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron-deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by '44-fold compared to without ZIF (ca. 1 %). The Pt/Au-NZIF interaction is key to enable strong N2 adsorption over H atom.
AB - The electrochemical nitrogen reduction reaction (NRR) offers a sustainable solution towards ammonia production but suffers poor reaction performance owing to preferential catalyst–H formation and the consequential hydrogen evolution reaction (HER). Now, the Pt/Au electrocatalyst d-band structure is electronically modified using zeolitic imidazole framework (ZIF) to achieve a Faradaic efficiency (FE) of '44 % with high ammonia yield rate of '161 μg mgcat−1 h−1 under ambient conditions. The strategy lowers electrocatalyst d-band position to weaken H adsorption and concurrently creates electron-deficient sites to kinetically drive NRR by promoting catalyst–N2 interaction. The ZIF coating on the electrocatalyst doubles as a hydrophobic layer to suppress HER, further improving FE by '44-fold compared to without ZIF (ca. 1 %). The Pt/Au-NZIF interaction is key to enable strong N2 adsorption over H atom.
KW - d-band modification
KW - electrochemical nitrogen reduction reaction
KW - interfacial cavities
KW - metal–organic frameworks
KW - solid@MOF nanoparticles
UR - http://www.scopus.com/inward/record.url?scp=85088481141&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85088481141&partnerID=8YFLogxK
U2 - 10.1002/anie.202006071
DO - 10.1002/anie.202006071
M3 - Article
C2 - 32463536
AN - SCOPUS:85088481141
SN - 1433-7851
VL - 59
SP - 16997
EP - 17003
JO - Angewandte Chemie - International Edition
JF - Angewandte Chemie - International Edition
IS - 39
ER -